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Abstract. Quantum calculations of the resonant vibrational excitation of N2 by electron impact are carried
out using a model potential for exchange and correlation-polarization forces and exact static interaction.
The inelastic process is treated within a coupled channel, space-frame formulation and final cross-sections
are tested for convergence within less than 0.01% of their values. Comparison with the experiments yields
very good agreement with the latter data in the resonance region and suggests possible extension to
calculations near the threshold openings for rovibrational inelastic processes induced by electron impact.

PACS. 34.80.Bm Elastic scattering of electrons by atoms and molecules – 34.80.-i Electron scattering

1 Introduction

The study of the quantum dynamics involved in the scat-
tering of low-energy electrons from molecular gases is now
a very mature subject in which a great deal of data, both
experimentally and theoretically, have been gathered over
the years and have dealt with a very broad range of molec-
ular systems [1,2]. The object of several of such studies
has been to unravel as much as possible the details of the
energy transfer processes at the molecular level and to pro-
vide a correspondingly detailed theoretical explanation of
the features brought to light by the increased resolution
of the state-of-the-art experiments [3].

The computational rendition of the theoretical quan-
tum description of these inelastic collisions has to always
balance the demands for a realistic treatment of the pro-
cesses and the increased complexity of the calculations
involved. Thus, it is always useful to be able to develop
model treatments which are accurate and realistic when it
comes to reproducing the scattering attributes that they
can yield, but which can also keep within reasonable limits
the corresponding computational effort [4].

A case in point is provided by the correct description
of rotovibrational excitations in simple molecular gases
by a single collision with a low-energy electron at ener-
gies close to the openings of such channel thresholds. The
usual theoretical treatment involves solving the rotovibra-
tional inelastic problem in the Body-Fixed (BF) reference
frame and carrying out vibrational coupled-channel (CC)
calculations in the same molecular reference frame that
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can take the advantage of the point-group symmetries of
the target vibrations [5]. On the other hand, when the
collision energies go down to a few meV above thresholds,
or in the vicinity of resonances, the interaction times be-
tween the impinging electron and the rotating molecule
become larger, so that the recoupling of the orbital and
rotational angular momenta requires using the external,
laboratory frame as a reference space: the Space-Fixed
(SF) representation [6]. In such instances, therefore, the
calculations not only require the inclusion of several ro-
tational channels which are asymptotically closed [4] but
further require the expansion over a large number of vibra-
tional channels since they are meant to correctly describe
the marked distortion of the target molecular structure
that occurs upon attachment of the impinging electron,
especially at energies where narrow resonances exist [5].

In the present work we therefore intend to focus on
that very region and to develop a model potential that is
able to produce in local form the full e− − N2 interaction
potential over a broad range of molecular geometries. Such
model will be tested around the well-known Πg resonance
of N−

2 [7], in order to assess its capabilities for reproducing
such well-known experimental features [8].

The following Section 2 therefore describes our method
while Section 3 reports calculations performed around the
Πg resonance region. Section 4 summarizes our conclu-
sions.

2 Theoretical formulation

2.1 The quantum dynamics

In order to ultimately describe the structural distortions
that are induced into the target molecule by the impinging
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particle, the total scattering wavefunction can be ex-
panded in terms of asymptotic rotational and vibrational
eigenfunctions of the isolated partner

Hmol(R)χν(R)Yjmj(R̂) =[
εν +

�
2

2I
j(j + 1)

]
χν(R)Yjmj(R̂) (1)

where εν is the vibrational eigenvalue, I the molecular
moment of inertia [6] (R̂) gives the space orientation of
the molecular bond and R the internuclear separation.
Hence, the total scattering wavefunction is given as

Ψn(E, re,R) =
∑

f

ui→f (re, E)χf (R)Yf (R̂) (2)

where |f〉 denotes the final states of the vibrating molecule
that are involved in the expansion and the ui→f (re, E)
are the channel components of the scattering wavefunc-
tion which have to be determined by solving the usual
Schrödinger equation subject to its scattering boundary
conditions, with re being the scattered electron vector po-
sition from the molecular center of mass

ui→f (re) → δifh(−)(re) − Sifh(+)(re) as (re) ∼ ∞ (3)

where h(±)(re) is a pair of linearly independent free partial
solutions defined as

h
(±)
if ∼ δifk

−1/2
i exp [i(kir ± liπ/2)] . (4)

When they are chosen to be appropriate Riccati-Hankel
functions, then the Sif coefficients become the elements of
the reduced scattering matrix, often additionally labelled
by the total angular momentum of the system: J = j + l,
the latter l being the continuum electron partial wave com-
ponent. The ui→f are expanded in products of total an-
gular momentum eigenfunctions and of radial functions
ϕJ

λλ′ (E, re), where J is the magnitude of the total angular
momentum and, λ′ = (j′, l′). The radial functions are in
turn solutions of the familiar set of coupled, second order
homogeneous differential equations (in the case of local
interactions) [9,10] which represent the Coupled Channel
formulation[

d2

dr2
e

I2 − 1
r2
e

l2 + K2
ν

]
ΦJ

ν (E, re) =
∑
ν′

UJ
νν′ΦJ

ν′(E, re)

(5)
where I is the unit matrix, ΦJ is the matrix of radial
functions and

(l2)λλ′ = l′(l′ + 1)δλλ′ (6)

(K2
ν)λλ′ = k2

jνδλλ′ = (2/�
2)(E − Ejν)δλλ′ (7)

(UJ
νν′ (re))λλ′ =

∑
L

fL(lj; l′j′; J)〈χν |VL(re)(R)|χν′ 〉 (8)

where the fL(lj; l′j′; J) are the Percival and Seaton co-
efficients [6,11] and the coupling between the asymptotic

(diabatic) target rotational and vibrational states is given
by the radial matrix elements of equation (8).

The number of channels to be included in the expan-
sion for equation (5) obviously depends on the system and
on the collision energy. Furthermore, for each selected col-
lision energy it also depends on the region of interaction
that is being sampled during the search for the channel
eigenfunctions. In the short-range regions, which corre-
spond to the strongest interaction, one should include all
those channels which become locally open because of the
attractive features of the given potential (and which would
be asymptotically closed, or at least some of them). Their
number could be very large in the present situations where
the Coulomb interaction is the strongest over the nuclear
cusp regions. On the other hand, in the weaker asymp-
totic region for re ∼ ∞, only a few of the open channels
will be needed to describe the weaker target distortion. In
between these two extreme situations there is a region of
interaction where the closed channels change their impor-
tance with distance and therefore could be varied in num-
ber accordingly. Just to treat such demanding interaction
forces during an exact quantum dynamics, we have re-
cently developed [10] a suitable numerical algorithm that
judiciously performs the controls along the radial evalua-
tion process and modifies the size of the relevant S-matrix.
We have called it the Modified Variable Phase Approxi-
mation (MVPA) and have employed it in the present case
to solve the set of coupled equations (5). The gain in the
computational effort can be of about two orders of mag-
nitude with respect to more conventional methods [12].

Typically, for numerical convergence we needed to use
the full coupling from about 10−5 Å (the initial integra-
tion point) out to 16.0 Å, then we could gradually reduce
the K-matrix size out to 400 Å. The total angular momen-
tum values went up to J = 3 while the target rotational
basis was extended up to 36: the rotational constant of our
target was taken to be 1.989581 cm−1. The multipolar co-
efficients of the potential expansion went up to λmax = 34.
The number of vibrational levels included in the expansion
was sixteen levels up to νmax = 15. It indicates that over
the energy range of the resonant process the N−

2 molecule
which is being formed is markedly different from asymp-
totic shape of isolated N2. The integration over the in-
ternuclear coordinate of the coupling matrix elements of
equation (8) run from Rmin = 0.8 Å up to Rmax = 1.6 Å,
covering a range of 16 vibrational levels; the latters were
obtained by numerical integration over the potential en-
ergy curve [13] using our own computed potential energy
points. The above parameters produce convergence of the
S-matrix elements of the order of about 10−3–10−4 with
respect to further extension of the CC expansion indicated
above.

2.2 The electron-molecule interaction

2.2.1 The single center expansion

We employ an ab initio, parameter-free approach which
starts with the target nuclei varying their relative distance
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over a preselected range of values. Furthermore, the tar-
get electrons are in their ground molecular electronic state
and are described using the Hartree-Fock, Self-Consistent
Field (SCF) approximation via the Single-Determinant
(SD) description of N/2 occupied Molecular Orbitals
(MOs). In our implementation of the scattering equa-
tions the occupied MOs of the targets are again expanded
on a set of symmetry-adapted angular functions with
their corresponding radial coefficients represented on a
numerical grid [14]. In this approach, any arbitrary three-
dimensional function describing a given electron, either
one of the N bound electrons or the scattering electron,
is expanded around a single-center (SCE) usually taken
to be the c.o.m. of the global (N + 1) electron molecular
structure

F pµ(r, r̂|R) =
∑
l,h

r−1fpµ
lh (r|R)Xpµ

lh (r̂). (9)

The above SCE representation refers here to the µth el-
ement of the pth irreducible representation (IR) of the
point group of the molecule at the nuclear geometry R.
The angular functions Xpµ

lh (r̂) are symmetry adapted an-
gular functions given by proper combination of spherical
harmonics Ylm(r̂)

Xpµ
lh (r̂) =

∑
m

bpµ
lmhYlm(r̂). (10)

The details about the computation of the bpµ
lmh have been

given by us before and will not be repeated here [12,14,15].

2.2.2 The anisotropic potential

For a target which has a closed-shell electronic structure
with nocc doubly occupied orbitals ϕi, its undistorted in-
teraction with a scattering electron is given by the Exact
Static+Exchange contributions

VESE (r) =
2∑

k=1

−Zk

|r − Rk| +
nocc∑
i=1

(
2Ĵi − K̂i

)
(11)

where Ĵi and K̂i are the usual local static potential and the
non-local exchange potential operators, respectively. The
index k labels one of the two nuclei located at the coordi-
nate Rk in the c.o.m., molecular frame of reference (MF).

The non-local exchange interaction has been modeled
via a local Free Electron Gas form that has been used
before to simplify calculations [12,17]

V HFEGE
ex (re|R) =

2
α

kF (re)
[
1
2

+
(

1 − η2

4η

)
ln

∣∣∣∣1 + η

1 − η

∣∣∣∣
]

(12)

where:

kF (re) = [3π2ρ(re)]1/2;

η(re) = (k2 + 2If + k2
F )1/2/kF (13)

the parameter appearing in the above model potential
is the quantity If , the ionization potential of the target
molecule: we are therefore expected to know the If values
over the range of internuclear distances that contribute
to the vibrationally inelastic processes. However, we are
not aware of any experimental information on its changes
over molecular geometries, and thus decided to treat If as
a “tuning” parameter. The “tuning” procedure consisted
of calculating the cross-section in the resonance region for
the vibrationally inelastic 0–1 transition using different If

values, and choosing the one which renders the position
of the first computed resonance peak in accordance with
the experiments. One should note here that, although this
local modeling of the exchange potential is numerically
convenient for an SF treatment of the dynamics, we can-
not really tell how accurately it reproduces the scattering
observables near the low-energy thresholds without car-
rying out additional extensive calculations. Hence, in the
present work we decided to employ the adjusted parameter
above (If = 0.44 a.u.) to analyse the resonance region and
to obtain the best agreement with the available resonant
vibrationally inelastic cross-sections. The same value of
the If parameter will then be used without further adjust-
ment to study in our future work other processes induced
by the electron impact at much lower collision energies.

Electron-molecule scattering cross-sections (integral
and differential) which are computed using only the VESE

potential show in general limited agreement with experi-
mental data of elastic scattering and become even worse
when dealing with resonant scattering. The reason lies in
its lack of description of the target response, i.e. of the ef-
fects of long-range polarization of the bound electrons by
the charged projectile and of the short-range dynamical
correlation between the latter and the molecular electrons.

In order to include in the electron-molecule potential
the long-range polarization terms and the short-range dy-
namical correlation effects, we have implemented a local
energy-independent model potential, Vecp(r), discussed in
our earlier work [14,15,18]. Briefly, the Vecp potential con-
tains a short-range correlation contribution, Vcorr, which
is smoothly connected to a long-range polarization contri-
bution, Vpol, both terms being specific for electron projec-
tiles. The short-range term is obtained by finding where
the two radial coefficients for l = 0 first intersect. This
has been, in fact, what we found in many cases to be the
more effective choice in terms of the global smoothness of
the total potential [18]. Hence, one writes down the full
potential as

Vecp(re|R) =⎧⎪⎨
⎪⎩

Vcorr(re|R) re ≤ rmatch

Vpol(re|R) +
∑
lm

Clm r−λ Ylm(r̂e) re > rmatch
. (14)

The Clm coefficients have been determined to make the
potential continuous at rmatch and the exponent λ is a
function of l such that: λ(l) = 6, 5, 6 for l = 0, 1, 2 and
λ(l) = l + 2 for l ≥ 3. The matching functions are chosen
in a way in which each term added to Vpol after rmatch has
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the same functional form of the first term neglected in the
perturbation expansion of Vpol. This interaction now cor-
responds to solving our scattering equations using Static-
Exchange-Correlation-Polarization (SECP) potentials.

The polarization term contains the spherical and non-
spherical parts of the diatomic dipole polarisabilities:

V
(0)
pol (R) = −α0(R)

2r4
e

; and

V
(2)
pol (R) = −α2(R)

2r4
e

P2[cos(r̂e · R̂)] (15)

for the N2(R) calculation of α0 and α2 was varied over
the range of internuclear distances that are relevant to
the number of coupled asymptotic vibrational levels. At
the equilibrium geometries our computed values were
αxx = 9.82a3

0 and αzz = 14.824a3
0, to be compared with

the experimental values [12,17] of αexpt
xx = 10.204a3

0 and
αexpt

zz = 14.99a3
0. We have (somewhat arbitrarily) scaled

the radial dependence of the polarisability terms com-
puted by us to reproduce the experimental values at Req,
thus constructing a realistic long-range polarisation po-
tential over the required range of nuclear geometries to be
included in the coupling integrals of equation (8).

The full SECP interaction can be rewritten using the
familiar multipolar expansion in the Space-Frame (SF)
reference system of its Jacobi coordinates

VSECP (re′ |R) =
Lmax∑

L=0, even

V SECP
L (re|R)PL[cos(r̂e · R̂)].

(16)
The individual multipolar coefficients were then fitted
with spline functions.

3 Results

The resonant region of the N2 − e− scattering has been
studied several times, both with theory and through ex-
periments, over the last several years. We shall just sum-
marize here the most recent of these studies. Wong [19] has
performed measurements in the 1–4 eV energy region us-
ing a crossed beam electron spectrometer. Jung et al. [20]
have used an electron impact spectrometer in their beam
experiments. They considered an energy range from 0.5 to
6 eV in the angular range from 15 to 105◦. Sun et al. [21]
have used a conventional crossed electron-molecular beam
spectrometer to measure the DCS between –20 and 130◦
from 0.55 to 10.0 eV. Tanaka et al. [22] further employed
a crossed electron beam and molecular beam scattering
technique over the angular range of 20 to 130◦ in the
energy range from 3 to 30 eV. Brennan et al. [7] have
crossed a beam of N−

2 effusing from multichannel capil-
lary array with a beam of monoenergetic electrons in the
angular range from –20 to 130◦ at 1.5, 2.1, 3.0 and 5.0 eV.
Allan [27] has studied the energy dependence of the vi-
brational excitation using a trochoidal electron spectrom-
eter. Relative DCS (superpositions of 0 and 180◦ data)
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Fig. 1. Computed vibrationally inelastic cross-section for the
0−1 transition compared with the experimental data: (�) from
reference [20]; (�) from reference [21]; (∗) from reference [22];
(+) from reference [24]; (�) from reference [19]; (•) from ref-
erence [7].

have been normalized to the results of Jung et al. [20] at
2.25 eV to obtain the integral cross-sections.

In our first Figure (Fig. 1) we present the cross-section
obtained in the case of vibrational transition from the
ground state to the first excited (summed over the final ro-
tational states) compared with the selection of the existing
experimental data. As it can be clearly seen, the present
calculation is able to describe well the experimental phe-
nomena in the whole resonance region. We even report for
completeness the much earlier measurements by Schulz
et al. The number of peaks in the oscillatory resonance
structure obtained by means of the present formulation
seems to indeed confirm the measurements. The extensive
set of cross-section points obtained by Wong et al. [19] is
followed closely by the present curve, although, from the
second peak on, one may observe a certain shift towards
lower energies with respect to the experimental structures.
The important result of this comparison is that our ap-
proach is seen to be able to distinguish and locate all the
resonance peaks predicted by the measurements. Even the
old experiments of Schulz et al. [24], especially at the lo-
cation of their minimum points, are well reproduced here,
as our calculations render the counting of the number
of their peaks possible and usable. The reported exper-
imental points of Jung et al. [20], Sun et al. [21], Tanaka
et al. [22] and Brennan et al. [7] appear on the whole to
be well described by the present theoretical results, both
qualitatively and quantitatively: it is an important confir-
mation of the validity of our chosen formalism and of our
modelling of the interaction potential.

Figure 2 reports once again the 0−1 vibrationally in-
elastic, rotationally summed cross-section, this time in
comparison with other theoretical investigations. Both of
them, i.e. those of Robertson et al. [25] and R-matrix cal-
culations by Schneider et al. [26] seem to agree with the
present results in the resonance region, though one ob-
serves energy shifts in the resonance structure peaks, both
towards the lower and higher energies, the most notable
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Fig. 2. Computed vibrationally inelastic cross-section for
the 0–1 transition compared with the theoretical data: (—–)
present; (– – –) from reference [25]; (· · · · ·) from reference [26].
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Fig. 3. Computed vibrationally inelastic cross-section for the
0–1 transition compared with the experimental: (—–) present
results; (�) experiments from reference [28]; (•) experiments
from reference [23].

difference appearing in the energy range between 2.5 and
3.0 eV. As clearly seen, in this energy range our present
calculations find two distinct peaks, the third and the
forth, peaks, which are also confirmed by experimental
data, while the other theoretical curves only find there
one, broader peak shifted either towards lower [25] or
higher [26] energies with respect to experiments. There-
fore, the present results are seen to be the only ones
among existing calculations which are able to yield cross-
sections in agreement with the experimental findings over
the broadest range of resonance energies.

Our third figure (Fig. 3) further shows the (0–1) vi-
brational excitation integral cross-section obtained by the
present treatment and compares it with the DCS data
of Allan which have produced integral cross-sections in
absolute values [23]. We further compare with Buckman
et al. [28], where the experimental data have been scaled,
somewhat arbitrarily, so as to coincide with the measured
point of Jung et al. [20] at 2.47 eV, following the tech-
nique suggested in an earlier paper of Allan [27]. Such an
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Fig. 4. Comparison between cross-sections for different pro-
cesses: ( ) elastic; (—–) vibrationally inelastic rotation-
ally summed; (– – –) vibrationally elastic rotationally inelastic;
(– · –) vibrationally inelastic rotationally elastic.

approach can be usefully employed to check the general
agreement of the shape of the cross-section in question
between theory and experiments. As one may see, despite
the observed shift in the peaks positions, the overall struc-
ture of the resonance region is given quite closely by calcu-
lations and one can identify all the eight measured peaks,
a feature which seems to confirm once again the quality
of our chosen modelling of the phenomena.

The data shown by Figure 4 additionally report a
comparison between the computed inelastic processes ob-
tained for the different transitions and generated within
the present formulation. As it can be observed, the total
elastic cross-section is by far the biggest and appears as
the dominant phenomenon in the considered energy re-
gion. The purely rotational transition (j = 0, j′ = 2) is
seen to be a much less efficient process, about four times
less probable, although still larger than the purely vibra-
tional excitation: the latter energy transfer is therefore
much less likely to occur, especially outside the resonance
region. Vibrational cross-sections, summed over the final
rotational states are here much bigger than the pure ro-
tationally inelastic ones. It indicates that, contrary to the
vibrationally elastic case, rotationally inelastic transitions
markedly help to enhance the probability for further vi-
brational excitations.

The data of Figure 5 finally present the first three
contributions to the elastic cross-section, corresponding
to various values of the total angular momentum: respec-
tively 0, 1 and 2. As it may be noted, in the considered
energy region, by far the biggest contribution comes from
the J = 0 component. It provides a sort of “background”
behaviour while the Πg resonance is chiefly due to the
J = 2 component, which is the only one to exhibit an os-
cillatory structure and to allow for the l = 2 component
of the electronic angular momentum l̂ to perform its cru-
cial role of dynamical barrier trapping (shape resonance).
Higher J components are too small to be visible in this
figure.



500 The European Physical Journal D

0 1 2 3 4 5 6
collision energy (eV)

0

4

8

12

16

in
te

gr
al

 c
ro

ss
 s

ec
tio

n 
(A

2 )

J=0

J=2

J=1

Fig. 5. Elastic cross-section: terms corresponding to the con-
tributions from different total angular momentum values.

4 Conclusions

In the present work we have carried out the calculations
concerning the ro-vibrational excitations of molecular ni-
trogen induced by the collisions with slow electrons in the
energy range covering the well-known Πg resonance. The
overall agreement with the available data is quite satis-
fying, taking into account the approximations applied in
order to fully exploit SF treatment of the quantum dy-
namics. The chosen exchange interaction model (TFEGE)
seems to provide a realistic rendition of a localized inter-
action kernel, enabling us to perform converged electron-
molecule calculations in the SF (Space Fixed) frame of
reference.

In the near future we further intend to extend the cal-
culations by applying the exchange model established in
this work down to the lower energy regions, in the vicinity
of the excitation thresholds for rotational and vibrational
states, i.e. in the region where the BF approximations is
no longer valid in describing the process and the present
SF approach becomes mandatory. We hope that the SF
approach, which takes into account the proper dynamics
of the scattering event, will also be capable of yielding
realistic results in that interesting energy range near the
excitation thresholds.
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